

RESEARCH ARTICLE

Influence of neutron decay on nuclear reactor materials

[version 1; peer review: 2 approved, 1 approved with reservations]

Joseph Caleb Philippss ¹, Jeff Terry^{2,3}

¹Research Reactor, University of Missouri, Columbia, Missouri, 65211, USA

²Department of Physics, Illinois Institute of Technology, Chicago, Illinois, 60616, USA

³Department of Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology, Chicago, Illinois, 60616, USA

v1 First published: 07 Jun 2024, 2:51

<https://doi.org/10.12688/nuclscitechnolopenres.17547.1>

Latest published: 07 Jun 2024, 2:51

<https://doi.org/10.12688/nuclscitechnolopenres.17547.1>

Abstract

While many of the leading factors for material degradation in irradiated reactor components have been identified through past studies, spontaneous neutron decay within components is a factor absent in the literature. The byproducts of neutron decay, largely composed of a proton, could lead to excessive hydrogen content, irradiation assisted stress corrosion cracking, epsilon martensite formation, hydrides, ion induced damage, voids, bubbles, and dislocation loops. Neutrons are the most abundant relevant fission product, and neutrons are continuously decaying at a rate proportional to their production. This paper hypothesizes that at high neutron fluence, a quantifiable contribution to material degradation can be associated with the proton byproducts of neutron decay. Literature-based degradation mechanisms are presented along with initial calculations of the neutron decay contribution. The paper will demonstrate a potential new factor for consideration in the material degradation of nuclear reactor components.

Keywords

Radiated Materials, Neutron Decay, Hydrogen Embrittlement, Nuclear Reactor

Open Peer Review

Approval Status

1

version 1

07 Jun 2024

1. Mahmoud Daoudi, Centre National des Sciences et Technologie Nucléaires, Sidi Thabet, Tunisia

National Centre for Nuclear Science and Technology, Sidi Thabet, Tunisia

2. Yu Lu , Boise State University, Boise, USA

3. Noah McFerran , Lawrence Livermore National Lab, Livermore, USA

Any reports and responses or comments on the article can be found at the end of the article.