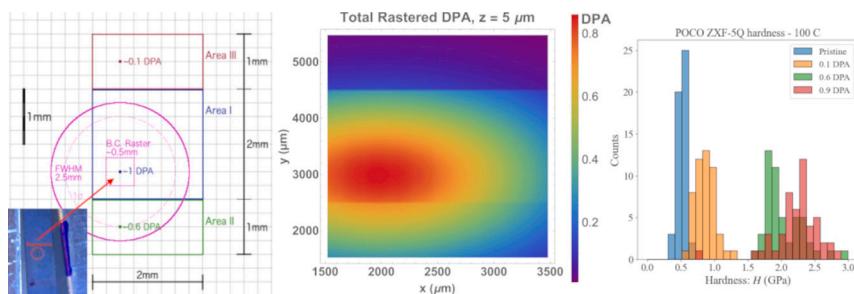


Radiation damage study of POCO ZXF-5Q graphite for neutrino production targets using 4.5 MeV helium ions

Abraham Burleigh ^{a,*¹}, Kavin Ammigan ^b, Sujit Bidhar ^b, Frederique Pellemoine ^b, Ovidiu Toader ^c, Thomas Kubley ^{c²}, Kai Sun ^d, Jeff Terry ^{a,e,f}

^a Department of Physics, Illinois Institute of Technology, Chicago IL 60616, United States of America

^b Accelerator Directorate, Fermi National Accelerator Laboratory, Batavia IL 60510, United States of America


^c Michigan Ion Beam Laboratory, University of Michigan, Ann Arbor MI 48109, United States of America

^d Department of Materials Science and Engineering, University of Michigan, Ann Arbor MI 48109, United States of America

^e Department of Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology, Chicago IL 60616, United States of America

^f Center for Synchrotron Radiation Research and Instrumentation (CSRR), Illinois Institute of Technology, Chicago IL 60616, United States of America

GRAPHICAL ABSTRACT

ARTICLE INFO

Keywords:

Radiation damage
High-power targetry
Ion irradiation
POCO graphite
Microstructural characterization

ABSTRACT

To address the challenges of increased beam power and target survivability associated with next-generation particle production beam lines, high dose, high-energy proton beam conditions are simulated using irradiation from low-energy ion beams. A low-energy ion irradiation study of POCO ZXF-5Q graphite under conditions similar to those of the NuMI NT-02 neutrino production target at the Fermi National Accelerator Laboratory is reported. Helium ion irradiation was performed at 100°C to a maximum damage level of 0.9 displacements per atom (DPA). Irradiation induced hardening, swelling of the irradiated region, inter-plane lattice expansion, and intraplane lattice contraction with increasing ion fluence was observed using micromechanical (nanoindentation, atomic force microscopy) and electron microscopy (high-resolution imaging, selected area diffraction) characterization. Similar changes were also observed in post irradiation examination of the NT-02 target indicating that ion irradiation can be a valuable tool for estimating radiation damage in proton beam targets. Caution must be exercised though, because the hardening, lattice alteration, and swelling occur to different magnitudes for a given damage level. The observed hardening and embrittlement were greater for ion irradiated graphite. For He ion irradiated samples the lattice spacing changes were smaller at low damage levels (78% less expansion and 71% less contraction at 0.1 DPA) and larger at high damage levels (38% more expansion and 5% more contraction

* Corresponding author.

E-mail address: burleigh@fnal.gov (A. Burleigh).

¹ Now at Accelerator Directorate, Fermi National Accelerator Laboratory, Batavia IL 60510.

² Now at Collider Accelerator Department, Brookhaven National Laboratory, Upton NY 11973.

<https://doi.org/10.1016/j.jnucmat.2024.155545>

Received 28 February 2024; Received in revised form 19 November 2024; Accepted 28 November 2024