

Rayford B. Payne · Laurence Casalot · Tessa Rivere
Jeffrey H. Terry · Lise Larsen · Barbara J. Giles
Judy D. Wall

Interaction between uranium and the cytochrome *c*₃ of *Desulfovibrio desulfuricans* strain G20

Received: 11 November 2003 / Revised: 22 March 2004 / Accepted: 24 March 2004 / Published online: 28 April 2004
© Springer-Verlag 2004

Abstract Cytochrome *c*₃ of *Desulfovibrio desulfuricans* strain G20 is an electron carrier for uranium (VI) reduction. When *D. desulfuricans* G20 was grown in medium containing a non-lethal concentration of uranyl acetate (1 mM), the rate at which the cells reduced U(VI) was decreased compared to cells grown in the absence of uranium. Western analysis did not detect cytochrome *c*₃ in periplasmic extracts from cells grown in the presence of uranium. The expression of this predominant tetraheme cytochrome was not detectably altered by uranium during growth of the cells as monitored through a translational fusion of the gene encoding cytochrome *c*₃ (*cycA*) to *lacZ*. Instead, cytochrome *c*₃ protein was found tightly associated with insoluble U(IV), uraninite, after the periplasmic contents of cells were harvested by a pH shift. The association of cytochrome *c*₃ with U(IV) was interpreted to be non-specific, since pure cytochrome *c*₃ adsorbed to other insoluble metal oxides, including cupric oxide (CuO), ferric oxide (Fe₂O₃), and commercially available U(IV) oxide.

Keywords Cytochrome *c* · *Desulfovibrio* · Uranium reduction

Introduction

Sulfate-reducing bacteria of the genus *Desulfovibrio* can reduce soluble uranium (VI) to insoluble uranium (IV) enzymatically (Lovley and Phillips 1992). Since this process has the potential for application in bioremediation efforts

of contaminated environments, the parameters that delimit its functioning are of interest. The first step to understand the system for dissimilatory U(VI) reduction by *Desulfovibrio* is to identify the enzymatic machinery involved. The *c*-type cytochromes of *Desulfovibrio* are involved in U(VI) reduction. Previous work showed that cytochrome *c*₃ of *Desulfovibrio vulgaris* Hildenborough could act as a U(VI) reductase in a cell-free system, with hydrogen gas as the electron donor for U(VI) reduction (Lovley et al. 1993). This observation was confirmed by studies of a cytochrome *c*₃ mutant of *Desulfovibrio desulfuricans* strain G20. This mutant was essentially unable to utilize hydrogen gas as an electron donor for U(VI) reduction and was partially impaired when lactate or pyruvate was the source of electrons (Payne et al. 2002). These observations were also consistent with the model that some of the electrons from the cytoplasmic oxidation of lactate or pyruvate are utilized in the production of hydrogen gas or hydrogen equivalents, which are in turn oxidized by a periplasmic hydrogenase coupled to cytochrome *c*₃ (Noguera et al. 1998; Odom and Peck 1981). Furthermore, since the cytochrome *c*₃ mutant of *D. desulfuricans* G20 was still partially capable of U(VI) reduction with electrons from organic acids, it was inferred that at least one other cellular protein has the ability to act as a U(VI) reductase.

Since sulfate-reducing bacteria are found in significant numbers at uranium-contaminated sites (Abdelouas et al. 2000; Chang et al. 2001; Suzuki et al. 2003), their response to low levels of toxic metals might indicate an interaction that could affect reduction. The hypothesis was tested that exposure to a sub-inhibitory concentration of uranium might induce the cellular machinery of *D. desulfuricans* G20 responsible for the reduction of this metal. Prior exposure of *D. desulfuricans* G20 cells to uranium actually decreased the ability of those cells to reduce U(VI). Interestingly, growth of *D. desulfuricans* G20 in the presence of uranium did not affect the expression of the periplasmic cytochrome *c*₃; however, cytochrome *c*₃ was no longer among the soluble proteins from a high-pH wash of those cells. Instead, periplasmic cytochrome *c*₃ was found associated with precipitated uraninite. The ad-

R. B. Payne · L. Casalot · T. Rivere · L. Larsen · B. J. Giles
J. D. Wall (✉)
Department of Biochemistry, University of Missouri-Columbia,
Columbia, MO 65211, USA
Tel.: +1-573-8828726, Fax: +1-573-8825635,
e-mail: wallj@missouri.edu

J. H. Terry
Argonne National Laboratory,
9700 S. Cass Avenue, Argonne, IL 60439, USA