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The method of excess fractions (EF) is well established to resolve the fringe order ambiguity generated in
interferometric detection. Despite this background, multiwavelength interferometric absolute long dis-
tance measurements have only been reported with varying degrees of success. In this paper we present a
theoretical model that can predict the unambiguous measurement range in EF based on the selected
measurement wavelengths and phase noise. It is shown that beat wavelength solutions are a subset
of this theoretical model. The performance of EF, for a given phase noise, is shown to be equivalent
to beat techniques but offers many alternative sets of measurement wavelengths and therefore EF offer
significantly greater flexibility in experimental design. © 2011 Optical Society of America
OCIS codes: 060.2370, 100.2650, 120.3180, 120.3940, 120.4800.

1. Introduction

The precise measurement of distance is of major
importance in science and technology. In 1892,
Michelson et al. carried out the first measurement
of the length of the Pt-Ir bar, which was the interna-
tional prototype of the meter by using the red cad-
mium wavelength in an interferometer [1]. Since
then, the challenge faced by optical metrologists is
to provide solutions for absolute long-range distance
measurements to nanometer precision [2–5]. Exam-
ples of long range metrology include the measure-
ment of gauge blocks up to 500mm in standards
laboratories [6,7] and in astronomy where the dis-
tance between the arms in an interferometric tele-
scope array can be tens of meters [8–10].

In a Michelson interferometer, the optical path
difference (OPD) of a single fringe corresponds to a
displacement of λ=2. For example, an optical fringe
in the C-band represents a displacement of a few
hundred nanometers. Subfringe resolution can be
achieved routinely using phase stepping or Fourier

transform techniques [11,12] while, more recently,
sinusoidal modulation methods have also been intro-
duced [13,14]. The typical resolution attained is
between 1=100th and 1=1000th of a fringe. However,
the subfringe data repeats every fringe, and there-
fore, to obtain measurements beyond λ=2 becomes
a rather difficult task. The major challenge is then
to determine the unknown integer fringe order.
One approach has been to incorporate the necessary
electronics or algorithms to count the interference or-
ders sequentially [15]. Nevertheless, fringe counting
is time consuming, making it unsuitable for dynamic
applications and also sensitive to environmental dis-
turbances and system drifts.

Multiwavelength interferometry (MWI) provides a
way to overcome the λ=2 range limit [16–18]. InMWI,
an independent phase measurement is made at each
wavelength, and these data are combined to give an
unambiguous measure over an extended range
which is defined by the synthetic beat wavelength
[18]. The largest synthetic wavelength of the MWI
system defines the unambiguous measurement
range (UMR) and is inversely proportional to the
smallest wavelength separation. However, the opti-
cal signals have to be demultiplexed to individual
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detectors, which for small wavelength separations
represent a practical limitation. For instance, when
using C-band wavelengths, a minimum wavelength
separation of ∼2pm is required in order to achieve
a measurement range of 1m.

For a two-wavelength interferometer and in the
presence of phase noise, the ratio between the beat
wavelength and the smallest measurement wave-
length must be limited in order to calculate the cor-
rect fringe order within the beat [19]. The addition of
further measurement wavelengths may result in an
extendedmeasurement range. The wavelength selec-
tion is not trivial as it affects both the measurement
range and the reliability of the fringe order calcula-
tion. Several approaches employ a geometric series of
synthetic wavelengths (beats) [20–23] in order to cov-
er a large dynamic range between the longest beat
wavelength and the measurement wavelengths.
Towers et al. [20] maximized the scaling factor
between the terms of the geometric series of beat
wavelengths in order to minimize the number of
measurement wavelengths for a given measurement
range and phase noise, referred to as generalized
optimum multifrequency (GOMF) interferometry.
However, GOMF defines a unique set of wavelengths,
and the measurement range is equal to the largest
beat wavelength and hence may be impractical par-
ticularly for long range applications where the wave-
length separation required becomes too small to
facilitate demultiplexing and in some cases the pre-
cise measurement wavelengths may be unavailable.
More recently, the authors have reported a hybrid
geometric series approach [24] that employs the ex-
tended rangemethod of de Groot [25] to overcome the
requirement for two very closely separated wave-
lengths and offer increased flexibility in wavelength
selection.

Alternatively, the method of excess fractions (EF)
[26] can be applied with any set of N measurement
wavelengths. The standard approach is to assume a
value for the fringe order at one wavelength and
hence determine the fringe orders at each of the
other wavelengths using the set of measured frac-
tional fringe values [6,27,28]. The correct solution
is the one that gives fringe orders at all measurement
wavelengths which are closest to integer values. One
of the wavelength selection strategies applicable to
EF is integer interferometry, in which the wave-
lengths are chosen to have integer values [23,29–34]
or are integer multiples of some arbitrary common
factor wavelength [35]. The common integer inter-
ferometry approaches take advantage of the aspects
of number theory such that the unknown integer
fringe orders can be calculated directly. In theory, the
measurement range is set by the distance at which
there is an integer multiple of each measurement
wavelength, i.e., a wavelength coincidence. The dis-
tance where wavelength coincidence occurs is maxi-
mized when all measurement wavelengths have no
common factors [34,35].

It has been shown that the maximum range
achievable with EF is approximately equal to that
predicted by GOMF given the same parameters
[36,37]. Notably, a number of groups have presented
results based on EF [2,23,28,34,37,38]. For example,
in the work of Decker et al., EF is used with non-
integer measurement wavelengths in both a three-
and four-wavelength MWI system [6]. Given the
phase noise estimate of 2π=50, the range should be
extended by a factor of 5.89 for each additional
measurement wavelength if the selections were
optimum. However, a maximum increase by a factor
of 3.73 in going to a four-wavelength system was
reported.

In this work we present a new generic model which
describes the relation between measurement wave-
lengths, phase noise, minimum achievable UMR,
and the reliability of a MWI system. The model can
be used to predict the performance of anMWI system
a priori, without the need for initial experimental
tests or numerical simulations. In addition, this mod-
el is not limited to integer wavelengths so that the
performance is only affected by the uncertainty of
the measured phase values. Furthermore, for a given
phase noise, the reliability and measurement range
can be quantified, and therefore used to adjust the
measurement wavelengths in order to meet the spe-
cifications of a practical metrology system. Moreover,
this method can be used to obtain a large UMR
which, unlike GOMF, does not require closely sepa-
rated measurement wavelengths. The results of this
work can be used in any MWI application in order to
improve the performance of the interferometer in
terms of reliability and measurement range.

2. Method of EF

A. Background

The Michelson–Benoit method of EF [26] consists of
a comparison of the fractional fringes for each wave-
length. In MWI, the relation between the unknown
fringe order m, the fractional fringe value ε, which
is in the interval ½−0:5; 0:5 �, and the OPD for a
set of N measurement wavelengths is given by

OPD ¼ u0λ0;OPD ¼ u1λ1;…;OPD ¼ uN−1λN−1; ð1Þ

where u is a dimensionless quantity ui ¼ mi þ εi and
λi is a measurement wavelength with λ0 < λ1 < … <
λN−1. The fringe order for the smallest wavelength
m0 must lie within the interval ½0;m0max�, with
m0max ¼ NINTðUMR=λ0 − 1Þ, where NINTð·Þ is the
nearest integer function. The fractional fringe va-
lues, ε0;…; εN−1, are obtained from the phase mea-
surement at the N individual wavelengths. It is
possible to derive another representation of Eq. (1)
so that

OPD ¼ ðM0i þ E0iÞΛ0i; ð2Þ
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where M0i ¼ m0 −mi, E0i ¼ ε0 − εi, and Λ0i is the
beat wavelength of the measurement wavelengths
λi and λ0 calculated by [18]

Λ0i ¼
λiλ0

λi − λ0
: ð3Þ

In EF, a residual error is defined in order to find the
correct integer fringe order m0, which corresponds
to the smallest measurement λ0. To accomplish this,
the fringe order at the ith wavelength,mi, needs to be
determined from

mi ¼ ðm0 þ ε0Þ
λ0
λi

− εi: ð4Þ

The residual error, ri, is then the difference between
this calculated value formi and the nearest integer of
this quantity, i.e.,

riðm0Þ ¼ fract
�
ðm0 þ ε0Þ

λ0
λi

− εi
�
; ð5Þ

where fract is defined as the difference between a
real value and its nearest integer, fractðmiÞ ¼
mi −NINTðmiÞ, and the LHS of Eq. (5) indicates that
ri is a function of m0. In the general case, where N
measurement wavelengths are used, an overall resi-
dual error, Rðm0Þ, can be determined as

Rðm0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN−1

i¼1

jriðm0Þj2
vuut : ð6Þ

This function must be evaluated for all possible
values ofm0 and the minimum overall residual error
identifies the most likely solution for the fringe order
m0 and hence the OPD.

The residual error can also be expressed in
terms of the beat wavelength as ðm0 þ ε0Þ λ0 ¼
ðM0i þ E0iÞΛ0i, hence

riðm0Þ ¼ fract
�
−
ðm0 þ ε0Þλ0

Λ0i
þ E0i

�
: ð7Þ

Equations (5) and (7) are equivalent. For convenience
we introduce a dimensionless unit, the scaling factor
sf i ¼ Λ0i=λ0, where sf i > 1. Hence

riðm0Þ ¼ fract
�
−
ðm0 þ ε0Þ

sf i
þ E0i

�
: ð8Þ

For further handiness, we remove the subscript of
the smallest scaling factor sf ðN−1Þ of the MWI system
and refer to it simply as sf , so that sf ¼ sf ðN−1Þ.

As the phase noise present in most interferometers
has Gaussian statistics [39], the noise in the frac-
tional fringe orders ε0 and εi can be described with
the standard deviations σε0 and σεi, respectively. Gi-
ven these considerations, an upper boundary of the
uncertainty in the overall residual errorR is given by

σR ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN − 1Þðσε0Þ2 þ

1

R2

XN−1

i¼1

ðriðε0; εiÞÞ2ðσεiÞ2
vuut : ð9Þ

B. Two-Wavelength Interferometry with EF

For a two-wavelength system, the overall residual er-
ror is given by Eq. (8) with i ¼ 1. The absolute value
of the residual error is plotted in Fig. 1 for a scaling
factor of 7.88 and ε0 ¼ ε1 ¼ 0. Selecting these parti-
cular values for the fractional fringe values implies
that the correct solution is at m0 ¼ 0. For other frac-
tional fringe values the graph is found to translate
horizontally but has the same form, hence this posi-
tion can be used without any loss of generality. The
fract function generates a periodic result and there-
fore the residual error is also periodic. However, as
m0 is an integer, the sequence of possible values of
the residual error generated for the case of m0 ¼
0; 1; 2; 3, etc., is in most cases periodic. For the special
case, where sf is an integer, the period of the
sequence generated is equal to the period of the func-
tion f ðxÞ with f ðxÞ ¼ fractðx=sf Þ, where x is continu-
ous. However, for the general case, where sf has a
fractional part, the period of the sequence generated
is larger than the period of f ðxÞ. Notably, the period
of the sequence is infinite, if sf is irrational. The
positions of local minima depend on the number of
wavelengths of λ0 in the beat wavelength Λ01, i.e.,
the scaling factor.

Any noise present in the interferometer generates
a variation in the residual error values. Hence, all
other residual error values except that at the correct
solution must lie above the uncertainty generated by
the noise. By increasing m0, the first residual error
value that lies within the uncertainty formed by
the measurement noise determines the maximum
unambiguous range. The residual error plot in Fig. 1
shows a number of critical points which are dis-
cussed below.

Fig. 1. Absolute residual error pattern for a two-wavelength
system with a scaling factor of sf ¼ 7:88.
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1. Residual Error at m0 ¼ 1

The residual error, r1ðm0 ¼ þ1Þ, must be above the
uncertainty generated by the phase noise in order
to range beyond m0 ¼ 1. When the scaling factor is
large, r1ðm0 ¼ þ1Þ decreases closer to the uncer-
tainty. From Eq. (8) and recalling that ε0 ¼ ε1 ¼ 0,

r1ðm0 ¼ þ1Þ ¼ fract
�
−
1
sf

�
: ð10Þ

For the case where the uncertainty in the residual
error can be estimated with Eq. (9), the separation
in the residual error between potential fringe order
solutions can be related to the probability of making
a distance measurement beyond any particular
range. Hence, provided the residual error values are
separated by at least 6σ, there will be a 99.73% prob-
ability of being able to range beyond this point
ðm0 ¼ 1Þ. Referring to Eq. (9), due to uncertainty in
fractional fringe values (phase measurement noise),
the noise in the overall residual error, σR, for the case
of two measurement wavelengths is given by

σR ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσε0Þ2 þ ðσε1Þ2

q
;

which is reduced to σR ¼ ffiffiffi
2

p
σε, for the case σε ¼

σε0 ¼ σε1, where σεi is the standard deviation noise
in the fractional fringe values. The fract function it-
self will not have any effect on noise propagation into
the residual error as it is linear and continuous pro-
vided the magnitude of the noise term is as expected
and≪ 0:5. Therefore, for a 6σ reliability in exceeding
the range given by m0 ¼ 1, and thereby being able to
range reliably up to the first beat wavelength

����fract
�
−
1
sf

�����≥ 6
ffiffiffi
2

p
σε; ð11Þ

where j · j denotes the absolute value. For sf > 2,
fract½1=sf � ¼ 1=sf , and therefore

sf ≤ 1=ð6
ffiffiffi
2

p
σεÞ: ð12Þ

This expression is directly equivalent to the noise
limit developed in the GOMF approach ([Eq. (1) of
[20]], with σε ¼ σϕ=2π. The possible values of m0
within the measurement range are given as

m0 ¼ ½0; floorðsf Þ − 1�; ð13Þ

where ½x; y� indicates the range of possible values
such thatm0 ≥ x andm0 ≤ y and floorð·Þmeans round
to the next smallest integer.

2. Residual Error at the First Beat Wavelength

Another notable value of the residual error is found
for

m0 ¼ NINTðsf Þ; ð14Þ

which corresponds to the value of the fringe order
at λ0, closest to the first beat wavelength. At this
location, the first local minimum of the value of
the residual error is to be expected and from Eqs. (8)
and (14) is given by

r1ðm0 ¼ NINTðsf ÞÞ

¼ fract
�
−ðNINTðsf Þ þ ε0Þ

1
sf

þ E01

�
: ð15Þ

In the case plotted here (Fig. 1) with ε0 ¼ ε1 ¼ 0,
using the relation fractðxÞ ¼ x −NINTðxÞ, and con-
sidering the absolute value of the residual error

jr1ðm0 ¼ NINTðsf ÞÞj ¼
����fract

�
ðNINTðsf ÞÞ 1

sf

�����
jr1ðm0 ¼ NINTðsf ÞÞj ¼

����fract
�ðsf − fractðsf Þ

sf

�����
¼

����fract
�
1
sf

fractðsf Þ
�����; ð16Þ

and because sf > 1, the value of the absolute residual
error is given by

jr1ðm0 ¼ NINTðsf ÞÞj ¼
���� 1sf fractðsf Þ

����: ð17Þ

It is possible to range beyond the distance given by
m0 ¼ NINTðsf Þ, provided that a noise criterion simi-
lar to Eq. (12) is satisfied, which results in a 6σ
reliability to range reliably with m0 > NINTðsf Þ of

���� 1sf fractðsf Þ
����≥ 6

ffiffiffi
2

p
σε;

so that

sf ≤
1

6
ffiffiffi
2

p
σε

jfractðsf Þj: ð18Þ

As fract returns values less than 0.5, it is clear by
comparing Eqs. (12) and (18) that in order to range
beyond the first beat wavelength [Eq. (12)], the scal-
ing factor must be lower, i.e., the beat wavelength
itself must be reduced.

C. Calculation of Local Minima with the Use of Continued
Fractions

The total absolute residual error of a two-wavelength
interferometer is calculated from Eqs. (6) and (8) and
can also be expressed as
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Rðm0Þ ¼
����fract

�
−
m0

sf
−

�ε0
sf

− ðε0 − ε1Þ
������

¼
����fract

�
m0

sf
þ f ðε0; ε1Þ

�����; ð19Þ

where f ðε0; ε1Þ is a constant offset calculated as

f ðε0; ε1Þ ¼
�ε0
sf

− ðε0 − ε1Þ
�
: ð20Þ

As shown in Eq. (19), it can be concluded that
because fractð·Þ is periodic when applied to a contin-
uous variable, the function Rðm0Þ must be pseudo-
periodic and the term f ðε0; ε1Þ is only responsible
for a constant offset. Every periodic function gðxÞ
with period T fulfills the property gðxÞ ¼ gðxþ TÞ,
or gðxÞ − gðxþ TÞ ¼ 0. Similar properties apply also
to Rðm0Þ, where the resulting pattern of the residual
error has the pseudoperiodic properties Rðm0Þ−
Rðm0 þMÞ ≈ 0, where M is an integer. It should be
noted that for the calculation of M it is sufficient
to consider the case f ðε0; ε1Þ ¼ 0, without loss of gen-
erality, because the offset f ðε0; ε1Þ of Eq. (20) does not
affect the periodicity of Rðm0Þ. Hence, at the correct
fringe order m0 ¼ m and the fringe order m0 ¼ mþ
M the actual values of the residual error are given as
RðmÞ ¼ 0 and RðmþMÞ ≈ 0, respectively, and there-
fore, the measurements remain only unambiguous
if the possible values of m0 are found in the interval
m0 ¼ ½0;M − 1�. Therefore, if solely the minimum ab-
solute values of Rðm0Þ or the constant M is to be
evaluated, the fractional fringe values can be set
to ε0 ¼ ε1 ¼ 0, so that

Rðm0Þ ¼
����fract

�
m0

sf

�����: ð21Þ

Equation (21) implies that the correct value of m0 is
found to be m0 ¼ 0 (as ε0 ¼ ε1 ¼ 0) and the residual
error at the neighboring fringe order Rðm0 ¼ 1Þ ¼
1=sf [see Eq. (10)]. Local minima of Rðm0Þ occur at
the location where the product ðm0 × 1=sf Þ is close
to an integer, and the UMR is determined by the lo-
cation for which fractðM · 1=sf Þ ≈ 0.

In Appendix A, a real number x0 is developed with
NICF (NICF), and the approximate values of x0 as
the ratio of two integers, x0 ≈ sk=qk, is discussed. The
ratio sk=qk becomes a better approximation to x0 as k
increases. This technique can also be applied to the
residual error defined in Eq. (21), using the develop-
ment of the parameter 1=sf with NICF, as

x0 ¼ 1
sf

≈
sk
qk

< 1; ð22Þ

so that the local minima of the residual error are
found where m0 ¼ jqkj (i.e., m0=sf becomes close to
an integer). The corresponding values of the residual
error at the points m0 ¼ jqkj are [from Eq. (A8) of
Appendix A]

Rðm0Þ ≥
���� x0
pkþ1

����; ð23Þ

where the coefficients pk are also derived from the
continued fraction representation of 1=sf as defined
in Appendix A. The sk and qk terms have a physical
meaning in terms of MWI. The coefficients qk repre-
sent the fringe order at the local minima in the
residual error, and the coefficients sk are the corre-
sponding skth beat wavelength.

In the presence of an uncertainty in the residual
error, σR [see Eq. (9)], the two-wavelength interfe-
rometer can be described by five parameters, Q, S,
T, V , and W, which are defined as

S ¼ jskþ1jQ ¼ jqkþ1j
if f∃!k ∈ Njj1=V j < 6σR ≤ j1=Tjg; ð24Þ

with

T ¼ pkþ1=x0;V ¼ pkþ2=x0;W ¼ jqkj for fractðxkþ1Þ ≠ 0
T ¼ pkþ1=x0;V ¼þ∞;W ¼ 0 for fractðxkþ1Þ ¼ 0;

;

ð25Þ
where the coefficients xk are also derived from the
NICF representation of 1=sf as defined inAppendixA
and N denotes the set of natural numbers. The
notation of Eqs. (24) and (25) provides a general ex-
pression for the residual error and the UMR of the
two-wavelength interferometer and avoids the hand-
ling of the subscript k. The series of values qk are a
monotonically increasing set of integer fringe orders,
and the minimum value of the residual error up to
any particular qk is given by jfract½jqkj=sf �j. The limit-
ing UMR in any particular situation can be found by
comparing the uncertainty in the residual error
(which depends on the phase noise of the interferom-
eter) with the minimum residual error values, which
decrease asm0 increases. Therefore, the approach ta-
ken in Eq. (24) is to examine each interval m0 ¼ jqkj
and m0 ¼ jqkþ1j and refer to the absolute value of
the residual error at either end of the interval using
the terms T and V where jfract½jqkj=sf �j ¼ j1=Tj and
jfract½jqkþ1j=sf �j ¼ j1=Vj, respectively. The limiting
UMR is found when the values 1=T and 1=V bracket
the minimum residual error 6σR.

To highlight these properties, the exemplary case
of a two-wavelength interferometer with sf ¼ 7:88 is
shown in Fig. 1 and is replotted in Fig. 2 together
with its estimated lower boundary. In addition, Fig. 2
also highlights the values of 1=T and 1=V for the
exemplary cases that correspond to k ¼ 0, k ¼ 1,
and k ¼ 2.

Given these facts, it is possible to identify the
fringe order, Q −W, at which the minimum value
of the residual error reduces to less than the uncer-
tainty in the residual error derived from a practical
system with phase noise. Similar to the example in
Appendix B, a lower bound of the residual error can
be expressed as

5488 APPLIED OPTICS / Vol. 50, No. 28 / 1 October 2011



jRðm0Þj≥

8>>>><
>>>>:

���1T
��� form0¼½jqkj;ðjqkþ1j− jqkjÞ−1����1T

���−���1V
��� form0¼½ðjqkþ1j− jqkjÞ;ðjqkþ1j−1Þ����1V
��� form0¼jqkþ1j

;

ð26Þ

where j1=Tj is assumed to be always above the noise
floor from Eq. (24). Given these considerations, the
parameters Q and W, defined in Eqs. (24) and (25),
can be used to describe the resulting UMR as

UMR ¼ ðQ −WÞλ0; ð27Þ

so that the possible values of the fringe order m0 are
in the interval

m0 ¼ ½0; ðQ −W − 1Þ�: ð28Þ

The use of the parameters Q, S, T, V, and W has two
significant advantages compared to conventional al-
gorithms that only make use of the measurement
wavelengths or the scaling factor. First, the calcula-
tion of these parameters takes into account the
interdependence of phase noise, measurement wave-
lengths, and UMR, which is actually not the case for
conventional approaches where the scaling factor is
just given by the measurement wavelengths used in
the system. This is of particular importance if it is
desired to expand the measurement range beyond
the largest beat wavelength, a region where

currently established techniques fail to predict ac-
tual UMRs as well as the reliability of the measure-
ment. Second, the use of these parameters also
allows a comparison of various choices of measure-
ment wavelengths in terms of their performance.
It is possible to calculate different sets of measure-
ment wavelengths that create the same parameters
Q, S, T, V , and W and are therefore equivalent in
terms of performance. On the other hand, it is inter-
esting to show which sets of wavelengths correspond
to the same value for Q and W, i.e., are able to range
over the same UMR without compromising the
reliability.

This theory can be used to define the UMR of a
two-wavelength interferometer beyond any of the cri-
tical points identified in Fig. 1, corresponding to in-
creasing values of k, depending on the noise level in
the interferometer. An analogous approach for mea-
surements beyond the first beat wavelength (k ≤ 2)
has been reported by de Groot [25] in which the
UMR may initially be assumed to be sf =jfractðsf Þjλ0,
when the noise criterion [Eq. (18)] is fulfilled.
However, after detailed analysis it has been found
that the measurement range is given by Eq. (27),
in which W may not be zero, and the noise criterion
expressed in Eqs. (24) and (25) must be satisfied.

For convenience, and for reasons that become clear
later, the minimum value of the residual error within
the UMR of the two-wavelength interferometer is
defined as

ψ sf ¼
����1T

����: ð29Þ

The noise criteria in Eqs. (18) and (24) offer a vast
number of solutions when the interferometer wave-
lengths can be chosen to define a desired value of sf .
This is further investigated for a two-wavelength in-
terferometer with a fixed wavelength λ0 ¼ 405nm
and the second wavelength λ1 in the interval 532
to 780nm (sf ¼ ½2:08; 4:189�). The resulting UMR for
an interferometer with a phase noise of 1=1000th of a
fringe is shown in Fig. 3. The special case of kmax ¼ 2
(with the same range as the de Groot extension), and
the case of an unbounded value of kmax is shown in
Figs. 3(a) and 3(b), respectively.

It is clear from Fig. 3(b) that allowing the system to
range over multiple beat wavelengths can be toler-
ated for a multitude of additional selections for λ1
and will give a high UMR and reliability in calculat-
ing the fringe orders. It is interesting to notice that in
contrast to other approaches [24,25], when using EF,
any extended UMR can be achieved without modify-
ing the data processing algorithms.

3. Multiwavelength Interferometry

A. Three-Wavelength Interferometry with EF

In many applications, the UMR of a conventional
two-wavelength interferometer is not large enough.
The addition of a further measurement wavelength

Fig. 2. (Color online) Absolute residual error and the estimated
lower boundary for a two-wavelength system with a scaling factor
of sf ¼ 7:88. The minimum value of the residual error is high-
lighted for the exemplary cases with k ¼ 0, k ¼ 1, and k ¼ 2.
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enables a larger measurement range. Considering a
three-wavelength system with λ0 < λ1 < λ 2, sf ¼
Λ02=λ0, c=λ 0 > c=λ1 > c=λ 2, and f 0 > f 1 > f 2, where
c is the speed of light and f 0, f 1, and f 2 are the fre-
quencies corresponding to the wavelengths λ0, λ1, and
λ2. The beat frequencies F0n are given by F02 ¼ f 0 −

f 2 and F01 ¼ f 0 − f 1 ¼ ð1 − αÞF02, where α is a di-
mensionless factor and 0 < α < 1. Hence, f 2 is given
as f 1 ¼ f 2 þ αF02. The relation between the corre-
sponding beat wavelengths and the scaling factors
is given by Λ01 ¼ Λ02=ð1 − αÞ and sf 01 ¼ sf 02=ð1 − αÞ,
respectively. According to Eqs. (6) and (7), the total
residual error is the sum of the two individual error
components.

Rðm0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����fract

�
−
Lðm0Þ
Λ02

þ E02

�����
2

þ
����fract

�
−
Lðm0Þ
Λ01

þE01

�����
2

vuuuuut

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����fract

�
−
m0 þ ε0

sf
þ ðε0 − ε2Þ

�����
2

þ
����fract

�
−ð1−αÞm0þε0

sf þðε0−ε1Þ
�����

2

vuuuuut
; ð30Þ

where Lðm0Þ ¼ ðm0 þ ε0Þλ0 and sf ¼ sf 02, and from
Eq. (9) an upper bound of the standard deviation
of the residual error is given as

σR ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσε0Þ2 þ

1

R2

X2
i¼1

ðriðε0; εiÞÞ2ðσεiÞ2
vuut ; ð31Þ

which is reduced to σR ≤
ffiffiffi
3

p
σε for σε ¼ σε0 ¼ σε1 ¼ σε2.

1. Residual Error at m0 ¼ �1

Subsection 2.B.1, describes that the EF solver must
be able to distinguish between the correct value of
the residual error and values of the residual error
which are one fringe order apart. A similar criterion
is also valid for the three-wavelength interferometer;
from Eq. (30) and recalling that ε0 ¼ ε1 ¼ ε2 ¼ 0, the
residual error at m0 ¼ þ1 with sf > 2 is equal to

Rðm0 ¼ þ1Þ ¼ 1
sf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1 − αÞ2

q
:

For convenience, we define a dimensionless quantity
δ as

δ ¼ 1
sf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1 − αÞ2

q
: ð32Þ

Similarly to Subsection 2.B.1, a noise criterion for 6σ
reliability is defined as

δ ≥ 6σR; ð33Þ
where σR is the standard deviation of the total resi-
dual error, defined in Eq. (31). If this noise criterion
is fulfilled, the UMR exceeds the range given by
m0 ¼ 1; hence, it is possible to range reliably up to
the first beat wavelength.

2. Residual Error at m0 ¼ NINTðnSsf sf Þ
As it was for a two-wavelength interferometer, local
minima of the residual error occur at integer multi-
ples of the smallest beat wavelength. However, in the
case of a three-wavelength interferometer, the signif-
icant locations of low values of the residual error are
found at integer multiples, n, of the UMR of an inter-
ferometer utilizing only the smallest and largest
measurement wavelength. The overall residual error
of the three-wavelength system still has local mini-
ma at multiples of the UMR of the two-wavelength
interferometer. Subsection 2.B investigated the resi-
dual error of the two-wavelength interferometer in
Eq. (21) using the NICF development of x0 ¼ 1=sf ,
such that the residual error could be described with
five parameters,Qsf , Ssf , Tsf , Vsf , andWsf , where the
subscript sf refers to the continued fractions develop-
ment of x0 ¼ 1=sf . The subscript notation is intro-
duced at this point in order to avoid any confusion
of developed continued fractions of other constants.
The local minima of the residual error are found
where

m0 ¼ NINTðnSsf sf Þ ¼ nSsf sf − fractðnSsf sf Þ;

Fig. 3. Extended UMR (solid curve) of a two-wavelength system
with λ0 ¼ 405nm and a phase noise of 1=1000th of a fringe with
(a) kmax ¼ 2, and (b) with an unbounded value of kmax. The corre-
sponding noise limited value is indicated by the dotted line.
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where n is an integer ðn ¼ 1; 2; 3;…Þ. The correspond-
ing residual error for the fringe order m0, at the dis-
tance Lðm0Þ ¼ ðNINTðnSsf sf Þ þ ε0Þλ0, for ε0 ¼ ε1 ¼ 0,
is given by

Rðm0¼NINTðnSsf sf Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ½nSsf ;sf �2þjfract½ð1−αÞnSsf −ð1−αÞρ½nSsf ;sf ��j2

q
;

ð34Þ

where ρ½nSsf ; sf � ¼ fractðnSsf sf Þ=sf . The residual er-
rors with low absolute value are found to have a
small value of ρ½nSsf ; sf �, and ð1 − αÞnSsf is close to
an integer value, so that

jfract½ð1 − αÞnSsf � − ð1 − αÞρ½nSsf ; sf �j < 0:5:

And therefore, using fractðx� yÞ ¼ fractðxÞ�
fractðyÞ, Eq. (34) can be expressed as

Rðm0¼NINTðnSsf sf Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ½nSsf ;sf �2þðfract½nð1−αÞSsf �−ð1−αÞρ½nSsf ;sf �Þ2

q
:

When the product Ssf sf is approximately an integer,
i.e., taking the worst case, ρ½nSsf ; sf � ≈ 0 and the pre-
vious expression reduces to

Rðm0 ¼ NINTðnSsf sf Þ ¼ jη½n; ð1 − αÞSsf �j; ð35Þ

with

η½n; ð1 − αÞSsf � ¼ fract½nð1 − αÞSsf �
¼ fract½nfract½ð1 − αÞSsf ��
¼ fract½n=sf α�; ð36Þ

where

ðsf Þα ¼ 1=fract½ð1 − αÞSsf �: ð37Þ

The quantity sf α can be considered as an equivalent
scaling factor with jðsf Þαj ≥ 2.

As discussed in Subsection 2.C, the UMR of a
two-wavelength interferometer is limited by phase
noise. For instance, a two-wavelength system with
sf ¼ 3:553, Ssf ¼ 9, Vsf ¼ 154:48, Qsf ¼ 32, Wsf ¼ 7
has an UMR of 25λ0 and a minimum reliability of
99.73% when the uncertainty of the fractional fringe
values σε is ≤1=290th of a fringe so that the uncer-
tainty in R is 6σR ≤ j1=Tsf j ¼ 1=33:51.

The same two-wavelength system would be able
to achieve a minimum UMR of 135λ0 if the phase
noise of the system was significantly reduced (σε≈
1=1300th of a fringe). However, some interferometers
do not provide these phase noise requirements. In
such situations, the residual error term ρðnSsf ; sf Þ
of the two-wavelength system is in the order of the
noise floor.

Notably, Eq. (35) shares similarities with Eq. (8)
and indicates that a higher UMR is achievable with
the introduction of a third measurement wavelength.
As for the two-wavelength system, it is possible to
develop a nearest integer continued fraction for the
quantity 1=sf α ≈ sk=qk in order to determine the loca-
tion n ¼ qk, where the significant low values of
η occur.

The residual error of Eq. (35) is therefore similar to
the case of a two-wavelength interferometer [see
Eqs. (21) and (22)], and the equivalent scaling factor
is used for the NICF

x0 ¼ 1
sf α

≈
sk
qk

< 1:

An exemplary case is a three-wavelength interferom-
eter with λ0 ¼ 1530nm and λ2 ¼ 1608:2489nm,
sf ¼ 20:553 having an uncertainty of the fractional
fringe values σε is ≤1=520th so that the noise floor
σR ≤ 1=50th. It can be shown that a UMR ≈ 1000λ0
could be obtained and a vast number of choices for
λ1 provide a practically achievable UMR > 500λ0.

Another example of the residual error of a three-
wavelength system with sf ¼ 25:4 and α ¼ 7=13
and σR ¼ 1=50 is shown in Fig. 4. The relevant coef-
ficients are sf ¼ 25:4, Ssf ¼ 1, Vsf ¼ 63:5, Qsf ¼ 25,
and Wsf ¼ 1. The influence of the center wavelength
is described with the parameter 1=ðsf Þα ¼ 6=13.
Similar to the case of the NICF with x ¼ 1=sf , it is
possible to develop x ¼ 1=sf α and use the resulting
parameters Qα, Sα, Tα, Vα, and Wα to analyze the be-
havior of ηα. In line with the previously introduced
notation, the subscript α refers to the continued frac-
tions development of x0 ¼ 1=sf α. For 1=sf α ¼ 6=13,
the resulting coefficients are Tα ¼ 13, Vα → þ∞,
Wα ¼ 0, and Qα ¼ 13.

Consequently, the UMR is equal to

UMR ¼ floor½ðQα −WαÞSsf sf −Wsf �λ0; ð38Þ

Fig. 4. Values of the residual error for various values of m0 for
sf ¼ Ssf sf ¼ 25:4 and α ¼ 7=13 with ðQα −WαÞ ¼ 13. The residual
error shown corresponds to the fractional fringe orders
ε0 ¼ −0:3706, ε1 ¼ 0:4199, and ε2 ¼ −0:3245.
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with possible values for m0 in the interval

m0 ¼ ½0; floor½ðQα −WαÞSsf sf −Wsf � − 1�: ð39Þ

Hence, the exemplary case of the three-wavelength
system with sf ¼ 25:4 and α ¼ 7=13 and σR ¼ 1=50
has a UMR equal to

UMR ¼ floor½ð13 − 0Þ × 1 × 25:4 − 1�λ0 ¼ 329λ0:

As for the two-wavelength system, reliable measure-
ments can only be carried out when the noise crite-
rion of Eq. (33) is fulfilled. This can be seen in Fig. 4
by examining the diagonal line through r1ðm0Þ ¼
r2ðm0Þ ¼ 0, along which m0 increases monotonically
and the difference in residual error values between
consecutive points is given by δ. However, from Fig. 4
it can also be seen that there are other points in
neighboring diagonals that are close to the correct so-
lution, indicated as A and B in Fig. 4. Depending on
the relative magnitudes of ψ0, δ, and γ (which in turn
depend on α, sf , and m0), the potential solutions A
and B may be closer to the correct answer than C
and D (which lie along the diagonal through 0,0).
The fringe order at A and B is not necessarily one
of the set of points defined by m0 ¼ NINTðnSsf sf Þ,
which can occur in two circumstances: when the com-
bination of δ and γ mean that the next point closest to
the beat is in fact closer to the correct solution and
when Ssf > 1.

The corresponding absolute value of Rðm0Þ can be
estimated based on a geometrical analysis; any value
of the residual error can be represented with the
quantities γ, δ, and ψ0, and introducing two integer
variables t and b to indicate the position along a di-
agonal of increasing m0 and the neighboring diag-
onals, respectively. Therefore, for t ¼ 4, m0 ¼ 4 and
the residual error is 4δ; and the residual error differ-
ence between neighboring diagonals (increasing b) is
ψ0. There is an additional complexity as the location
of the integer fringe orders on neighboring diagonals
is not necessarily the same, and this is identified as γ
(see Fig. 4).

Therefore, as a function of b and t, the residual
error is defined as

jRðb; tÞj ¼
� ffiffiffiffiffiffiffiffiffiffi

ðtδÞ2
p

for b ¼ 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbψ0Þ2 þ ðγðbÞ − tδÞ2

p
for b ≠ 0

; ð40Þ

where b and t are integer ðb ¼ 0;�1;�2;… and
t ¼ 0;�1;�2;…Þ, γðb ¼ 0Þ ¼ 0, and ψ in general is
given by

ψðbÞ ¼ η½n; 1=sf a�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1= tan2 θ

p ; ð41Þ

where tanθ¼ 1=ð1−αÞ, ψð0Þ ¼ 0, and ψ0 ¼ ψðb ¼ �1Þ.
The two lowest possible values of ψ are denoted as ψ0
and calculated as

ψ0 ¼ � 1
Tα

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1 − αÞ2

p ; ð42Þ

whereTα has been obtained from the developedNICF
of1=sf α so that1=Tα is theminimumpossible absolute
value of η, defined by Eqs. (36) and (42), and n0 is the
corresponding value for n [see Eq. (36)].

One of theminimum nonzero values of the residual
error of Eq. (40) is found at the location t ¼ �1
with jRðt ¼ �1Þj ¼ δ. The interferometer has to
distinguish between the value Rðt ¼ 0Þ and
jRðt ¼ �1Þj ¼ δ, which leads to the previously devel-
oped noise criteria of Eq. (33). In the same way, the
second minimum absolute value of the residual error
of Eq. (40) is found to be

jRj ¼

8>><
>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ψ2
0 þ γ2

q
for γ ≤ δ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ψ2
0 þ ðδ − γÞ2

q
for γ > δ=2

; ð43Þ

where the quantity γ can be found in the range
γ ¼ ½0; δ�. The absolute value of γ is dependent on δ
and RðNINTðzsf ÞÞ, which are affected by the choice
of α and sf (z is an integer). In best case scenarios, the
distance γ is equal to δ=2. In worst case scenarios,
the distance γ is close to zero so that the absolute
value of the residual error is equal to jRðm0Þj ≈ ψ0.
Consequently, a noise criterion based on Eqs. (33)
and (43) can be defined as

jψ0j ≥ 6σR; ð44Þ
which together with the criterion in Eq. (33) ensures
high reliability for all absolute values of the resi-
dual error.

Therefore, similar to the case of Eqs. (24) and (25),
it is possible to define the five parameters,Qα, Sα, Tα,
Vα, and Wα for the case of x ¼ 1=sf α as

Sα ¼ jskþ1jQα ¼ jqkþ1j

if f∃!k ∈ Njj1=Vαj < 6σR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1 − αÞ2

q
≤ j1=Tαjg;

ð45Þ
with

Tα ¼ pkþ1=x0;Vα ¼ pkþ2=x0;Wα ¼ jqkj for fractðxðkþ1ÞÞ ≠ 0
Tα ¼ pkþ1=x0;Vα ¼ þ∞;Wα ¼ 0 for fractðxðkþ1ÞÞ ¼ 0: ; ð46Þ

5492 APPLIED OPTICS / Vol. 50, No. 28 / 1 October 2011



so that Eq. (44) is fulfilled. The factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1 − αÞ2

p
is

introduced because the nearest integer continuous
fraction development is for η rather than ψ [see
Eq. (41) and (42)].

B. Four-Wavelength Interferometry with EF

Similar to the case of three measurement wave-
lengths, a four-wavelength interferometer can be de-
scribed with the parameters sf , α1, and α2, where
0<α2<α1<1. Hence, the corresponding beat wave-
lengths are given by Λ01 ¼ Λ03=ð1 − α1Þ and
Λ02 ¼ Λ03=ð1 − α2Þ, having, for the case of ε0 ¼
ε1 ¼ ε2 ¼ ε3 ¼ 0, an overall residual error of

Rðm0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

þ
����fract

�
ð1 − α1Þ

m0

sf

�����
2

����fract
�

m0
sf

�����
2

þ
����fract

�
ð1−α1Þm0

sf

�����
2

vuuuuut
: ð47Þ

Similar to the case of the two- and three-wavelength
systems, it is possible to evaluate the residual error
at m0 ¼ 1 and define a dimensionless quantity δ:

δ ¼ 1
sf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1 − α1Þ2 þ ð1 − α2Þ2

q
; ð48Þ

which needs to fulfill a noise criterion defined as

δ ≥ 6σR: ð49Þ
The upper boundary of σR can be calculated from
Eq. (9) as

σR ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðσε0Þ2 þ

1

R2

X3
i¼1

ðriðε0; εiÞÞ2ðσεiÞ2
vuut ; ð50Þ

which is reduced to σR ≤ 2σε for σε ¼ σε0 ¼ σε1 ¼
σε2 ¼ σε3. At distances, which are equal to an integer
multiple of the UMR of the two-wavelength system,
given bym0 ¼ NINTðnSsf sf Þ, the residual error of the
four-wavelength system is found to be

Rðm0 ¼ NINTðnSsf sf ÞÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
þðη½n; 1=sf a2� − ð1 − α2Þρ½nSsf ; sf �Þ2

ρ½nSsf ;sf �2

þðη½n;1=sf a1�−ð1−α1Þρ½nSsf ;sf �Þ2

vuut ;
ð51Þ

where 1=sf α1 ¼ fract½ð1 − α1ÞSsf � and

1=sf α2 ¼ fract½ð1 − α2ÞSsf �: ð52Þ

For convenience, it is assumed that at the location
m0 ¼ NINTðnSsf sf Þ, the influence of ρðnSsf ; sf Þ is
negligible ρðnSsf ; sf Þ ≈ 0, so that Eq. (51) is reduced to

Rðm0 ¼ NINTðnSsf sf Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðη½n; 1=sf a2�Þ2 þ ðη½n; β1=sf a2�Þ2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfract½n=sf a2�Þ2 þ ðfract½β1n=sf a2�Þ2

q
; ð53Þ

with β1 ¼ ð1 − α1Þ=ð1 − α2Þ and 0 < β1 < 1 and both
residual error terms are expressed in terms of sf α2.
Equation (53) shares similarities with Eq. (30).
Similar to the case of the three-wavelength system,
the factor 1=sf α2 can be developed with NICF in order
to estimate the UMR of the system. The resulting
system performance is dependent on the parameter
ψα2:

ψα2 ¼ η½n0; 1=sf a2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1 − α2Þ2

p ; ð54Þ

which is calculated in the same way as ψ0 of Eq. (42),
using m0 ¼ NINTðn0Ssf sf Þ, and has to fulfill a noise
criterion, defined as

jψα2j ≥ 6σR: ð55Þ

The presence of the additional term η½n; β1=sf a2�
is of particular importance, when at a multiple of
the UMR of the three-wavelength interferometer
with the measurement wavelengths λ0, λ2, and λ3.
At this location n ¼ Sα and the product ð1=sf α2 × nÞ
is close to an integer value. In accordance to
Subsection 3.A.2, the value of the residual error at

n ¼ NINTðc1Sα2sf α2Þ; ð56Þ

where c1 is an integer ðc1 ¼ 1; 2; 3;…Þ needs to be in-
vestigated and represents a multiple of the UMR of
the three-wavelength interferometer. This location is
equivalent to the UMR of the three-wavelength inter-
ferometer having a low value of the residual error
term η½n; 1=sf a2�, which vanishes in the noise floor.
The residual error of Eq. (53) is therefore written as

Rðn ¼ NINTðc1Sα2sf α2ÞÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfract½n=sf a2�Þ2 þ ðfract½β1n=sf a2�Þ2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfract½c1Sα2 − ρ½c1Sα2; sf α2��Þ2

þðfract½β1c1Sα2−β1ρ½c1Sα2;sf α2��Þ2

r
; ð57Þ

where ρ½c1Sα2; sf α2� ¼ fractðc1Sα2sf α2Þ=sf α2 and β1 ¼
ð1 − α1Þ=ð1 − α2Þ with β1 < 1. When the product
Sα2sf α2 is approximately an integer, i.e., taking the
worst case, the value of r is small, ρ½c1Sα2; sf α2� ≈ 0,
and Eq. (57) reduces to

Rðn ¼ NINTðc1Sα2sf α2ÞÞ

≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfract½c1Sα2�Þ2 þ ðfract½β1c1Sα2�Þ2

q

≈ jfract½β1c1Sα2�j; ð58Þ

where sf β1 is the equivalent scaling factor, similar to
the scaling factor defined in Eq. (53) and is calculated
as
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sf β1 ¼ 1=fract½β1Sα2�: ð59Þ

Then sf β1 can be developed with NICF, so that the
result in Eqs. (58) and (59) is similar to Eq. (41), hav-
ing tan θ ¼ β1, η ¼ jfract½c1=sf β1�j. Hence a parameter
ψβ1 can be defined as

ψβ1 ¼
η½c1; 1=sf β1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ β21
q ; ð60Þ

which has to fulfill the noise criterion for all possible
values of k so that

jψβ1j ≥ 6σR: ð61Þ

It becomes clear that in order to fulfill the noise cri-
terion, the parameter β1 may need to be adjusted,
i.e., the actual value of the second or third measure-
ment wavelength may have to be changed.

As in Subsection 3.A.2, it is possible to treat
the case of x ¼ 1=sf β1 by the NICF [see Eqs. (24)
and (25)]. Therefore, it is possible to define the five
parameters, Qβ1, Sβ1, Tβ1, Vβ1, and Wβ1 for the case
of x ¼ 1=sf β1 as

Sβ ¼ jskþ1jQβ ¼ jqkþ1j
if f∃!k ∈ Njj1=Vβj < 6σR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β21

q
≤ j1=Tβjg; ð62Þ

with

Tβ¼pkþ1=x0;Vβ¼pkþ2=x0;Wβ¼jqkjfor fractðxðkþ1ÞÞ≠0
Tβ¼pkþ1=x0;Vβ¼þ∞;Wβ¼0for fractðxðkþ1ÞÞ¼0; ð63Þ

so that Eq. (61) is fulfilled.

C. General MWI with EF

Similar to the case of the three- and four-wavelength
system, it is possible to describe a general multi-
wavelength system having the measurement wave-
lengths λ0 < λ1 < … < λN−1, with the parameter
sf ¼ Λ0ðN−1Þ=λ0, and the dimensionless factors
with 0 < αN−2 < … < α2 < α1 < 1.

Similar to the previous sections, dimensionless
quantities δ and ψsf are defined as

δ ¼ 1
sf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

XN−2

i¼1

ð1 − αiÞ2
vuut ; ð64Þ

ψsf ¼
���� 1
Tsf

����;
where ψsf has been defined in Eq. (29).

The parameters ψαðN−2Þ;ψβ ðN−3Þ; :::;ψβ 1 can be
calculated from the constants

sf α ¼ fract½ð1 − αN−2ÞSsf �;
sf βðN−3Þ ¼ fract½βðN−3ÞSα�;
sf βðN−2Þ ¼ fract½βðN−2ÞSβðN−3Þ �;…sf β1 ¼ fract½β1Sβ2 �;

as

ψα ¼
1
Tα

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1 − αN−2Þ2

p ;

ψβn ¼
1

Tβn

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðβnÞ2

p ;

with

βn ¼ 1 − αn
1 − αnþ1

; ð65Þ

where 1=Tα and 1=Tβ have been obtained from the
continued fraction development of Eqs. (45) and (62),
respectively.

Reliable measurements are carried out if the
corresponding values for δ and ψ fulfill the noise
criterion

minfδ;ψsf ;ψαðN−2Þ;ψβðN−3Þ; :::;ψβ1g ≥ 6σR: ð66Þ

An upper boundary of the parameter σR can be
calculated from Eq. (9).

4. Previous Developments in the Literature

The performance of MWI depends strongly on the
choice of measurement wavelengths. The model for
EF presented in this work allows measurement
wavelengths to be identified, which are more favor-
able than others in terms of the performance of
the interferometer. It has also been shown that opti-
mum wavelength selections previously derived for
beat wavelength techniques are a subset of the the-
ory developed, as reported by Towers et al. [20].
Nevertheless, the use of EFallows significantly more
freedom in the choice of sets of measurement wave-
lengths while delivering similar performance to opti-
mum, geometric series beat wavelength approaches.

This section applies the framework developed in
the previous sections to discuss a variety of wave-
length selections that are commonly used in MWI.

A. Number Theoretical Approaches

Number theoretical approaches, also known as inte-
ger interferometric methods, are known to have a
UMR equal to the distance where wavelength coinci-
dence occurs. The principle of integer interferometry
has been applied to EF [24], but can also be applied
to the well-known algorithms based on the Chinese
remainder theorem (CRT) algorithm, which provides
an explicit, noniterative formula for the UMR and
m0. Many approaches choose the measurement wa-
velengths to be integers in order to apply the CRT
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[23,29–34]. The actual wavelength value used for the
calculation is often truncated such that the wave-
lengths used in the calculation are represented by in-
tegers. Some variations and extensions of these
methods utilize the fact that the ratio of measure-
ment wavelengths can be represented as a rational
number [40], as decimal continued fractions [41],
or that the measurement wavelengths can be scaled
by a known factor before truncation [36].

For all approaches, a well-known wavelength se-
lection criterion is to choose the value of the indivi-
dual wavelengths to be primes or coprimes in order to
maximize the UMR [23,29,40]. The basic idea behind
this method is that the individual wavelengths do
not share common divisors and the point where all
phase values of the wavelengths coincide is maxi-
mized. Hence, this criterion can be applied to both
the CRT-based approaches as well as EF.

However, this effect does not take into account the
system parameters δ and ψ , which vary strongly for
various sets of primes and coprimes. In particular, if
the smallest and largest measurement wavelengths
are chosen to be very close together, the actual value
of δ is low.

For instance, a three-wavelength integer interfe-
rometer with a phase noise of 1=300th of a fringe
would violate the noise criterion of Eq. (33):

δ ≥ 6σR;

for any selection of wavelengths from the set of prime
numbers within the range of a C.L. band source:

�
1531;1543;1549;1553;1559;1567;1571;1579

�
:

The reason for the violation of the noise criterion of
Eq. (33) lies in the limited maximum wavelength
separation available given by the wavelengths λ0 ¼
1531nm and λ1 ¼ 1579nm, and the resulting scaling
factor is larger than the permit able value given by
the noise criterion. The situation can only be resolved
if further laser sources are available spanning a lar-
ger wavelength range.

The other parameter ψ can depend on the relative
magnitudes of ψ0, δ, and γ (which in turn depends on
α, sf , and m0) and affects the minimum distance be-
tween potential fringe order solutions and the correct
solution of the fringe order (see Fig. 4). The impact of
the ψ parameter can be understood via an exemplary
set of relative prime wavelengths f9; 10; 11g pro-
posed in [23] for fine resolution measurements.
The corresponding value for α is 9=20, which means
that the product of ð1 − αÞz is exactly an integer at a
distance of 20 beat wavelengths z ¼ 20. However, the
product ð1 − αÞz becomes very close to an integer
value for particular values of z, in this case at
z ¼ 2; 4; 6;…, implying a considerably shorter UMR
depending on the level of uncertainty in the phase.

In other MWI systems, the wavelengths have been
selected so that sf ¼ 3:95 and α ¼ 0:5612 where the

phase noise is in the order of 1=240th of a fringe [34].
Because δ > 1=sf ≫ 6ð ffiffiffi

3
p

σεÞ, the error introduced by
δ (which evaluates to δ ¼ 1=3:61 ≈ 38ð ffiffiffi

3
p

σεÞ) is not
statistically significant. Therefore, the reliability is
only dependent on the parameter ψ, and reaches a
minimum when the product ð1 − αÞz becomes close
to an integer. This is the case for z ¼ 7 and z ¼ 9, be-
cause α is close to the fractions 4=7 ¼ 0:5714 and
5=9 ¼ 0:5556. Again the practical UMR will be less
than that expected.

B. Other Wavelength Selection Approaches

Another MWI has been presented by Decker et al.
[6], having measurement wavelengths of λ0 ¼
543:515367nm, λ1 ¼ 611:9703403nm, and λ2 ¼
632:9911815nm; thus, sf ¼ 7:07, α ¼ 0:208653601,
and δ ¼ 1=5:5441 with a phase noise of 1=50th of a
fringe. The value of δ is very close to the value re-
quired by the noise criterion of Eq. (33), and results
in an overall reliability of 99.07%, if the measure-
ment range is kept within the smallest beat
wavelength, UMR ¼ ½0; sf λ0 − λ0�. The parameter ψ
needs to be taken into account if the measurement
range is to be extended. For instance, if the measure-
ment range is kept within a UMR ¼ ½0; 4sf λ0 − λ0�,
the corresponding value of ψ is equal to ψ ¼ 0:163
(with the reliability of 99.89% for ψ ) and the corre-
sponding overall system reliability is equal to
98.98% (for δ and ψ). Another example is given for
the case where the measurement range is equal to
UMR ¼ ½0; 23sf λ0 − λ0�, with a minimum absolute va-
lue of ψ that is equal to ψ ¼ 2:7902e − 002 and the
resulting overall reliability is reduced to 57.37%.
Consequently, it has to be expected that when per-
forming repetitive measurements over the range
162λ0 some of the calculated fringe orders are found
to be incorrect, as it was observed in Decker et al. [6].

The introduction of a fourth wavelength, λ3 ¼
1152:59116nm, helps to fulfill the noise criterion
[Eq. (33)] as a result of a low value of δ. The system
parameters of the four-wavelength interferometer
are found to be sf ¼ 1:8924, α1 ¼ 0:788, α2 ¼ 0:733,
β1 ¼ 0:791, and δ ¼ 1=1:999. As a result of the large
spacing between the smallest and largest measure-
ment wavelength, δ is larger so that a reliability of
99.7% can be achieved considering this single para-
meter and the noise criterion of δ ≥ 6

ffiffiffi
4

p
σε ¼ 1=4:166

is fulfilled. However, the behavior of the interferom-
eter has changed for two reasons; first, the actual
value of the scaling factor has changed, and second,
the relative position of the center wavelengths with
respect to the last wavelength has also changed. This
set of wavelengths has a UMR of 28 fringe orders and
a reliability of 99.6%. The UMR can be increased by
compromising the reliability; for instance, the result-
ing performance is given as UMR ¼ 36λ0 (98.8%
reliability), UMR ¼ 509λ0 (66.67% reliability),
UMR ¼ 545λ0 (61.21% reliability), in accordance
with the reported performance. It should be noted
that, despite the fact that this set of four wavelengths
is used to range over a remarkable distance of 545λ0,
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the reliability can be increased with alternative
wavelength selections. A reliability of 78.89% can
be achieved with a phase noise of 1=50th of a fringe
without compromising the UMR.

5. Summary

In this paper, a model of the method of EFs has been
presented, which is applicable to a multiwavelength
interferometer employing an arbitrary number of
measurement wavelengths. Using this model, it is
possible to define the quantities sf , δ, and ψ , which
are directly related to the measurement wavelengths
and describe the UMR and the system performance
of the interferometer entirely. Generalized expres-
sions have been developed to determine the mini-
mum achievable UMR a priori, without carrying out
simulations or experimental tests, even if the achiev-
able UMR is found to be far beyond the largest beat
wavelength. To the best of our knowledge, Eq. (27) is
the first analytical expression for the UMR, which
can be applied to arbitrary measurement wave-
lengths. Consequently, and unlike the case of integer
interferometry, this procedure is not limited to sets
of wavelengths where the values are truncated to in-
teger values. It has also been shown that the NICF
representation of 1=sf can be used directly to predict
the minimum residual error value over any particu-
lar range in a computationally efficient manner.
Furthermore, it is also possible to use sf , δ, and ψ
to estimate quantitatively, for a given uncertainty
in the phase measurements, the reliability of the in-
terferometer without the use of simulations or ex-
perimental tests.

In experimental practice, the parameters sf , δ, and
ψ can be set and tuned to any desired values which
match the requirements of the given application.
This requirement is also fulfilled with the optimum
beat frequency approaches [20,24]. Nevertheless, the
use of EF allows significantly more freedom in the
choice of measurement wavelengths while delivering
similar performance.

Appendix A

The work of Hurwitz [42] describes the NICF devel-
opment from a real valued quantity x0 as

x0 ¼ a0 −
1
x1

; x1 ¼ a1 −
1
x2

;…; xk ¼ ak −
1

xkþ1
;…;

where ak ¼ NINT½xk� and NINTð·Þ is the nearest
integer function. The fract function is useful in EF
to define the residual error, riðm0Þ, where riðm0Þ ¼
fractðmiÞ ¼ mi −NINTðmiÞ, hence the calculated
fringe order which may be a real valued quantity
is given by mi ¼ NINTðmiÞ þ fractðmiÞ. Therefore a
modified recurrence relation is defined for a real
quantity x0 as

x0 ¼ a0 þ
1
x1

; x1 ¼ a1 þ
1
x2

;…; xk ¼ ak þ
1

xkþ1
;…;

ðA1Þ

where ak ¼ NINT½xk� as before. The NICF of x0 is
given as

x0 ¼ a0 þ
1
x1

¼ a0 þ
1

a1 þ 1
x2

¼ a0 þ
1

a1 þ 1
a2þ 1

x3

; etc:

Amore compact form of the NICFof x0 is given by the
sequence

x0 ¼ ða0;a1; a2; :::; ak; xkþ1Þ; ðA2Þ

where k < K, and ðK þ 1Þ is the number of elements
of the sequence in Eq. (A2). It should be noted that K
tends to infinity ðK → ∞Þ for the case of an irrational
value of x0. According to [42], the kth order approx-
imation of x0 is given by integer quantities sk and
qk as

x0 ≈
sk
qk

¼ ða0; a1;a2; :::; akÞ; ðA3Þ

which is the truncated sequence of Eq. (A2), and the
quantities sk and qk are calculated by the recursion
formulas

sk ¼ aksk−1 þ sk−2; and qk ¼ akqk−1 þ qk−2; ðA4Þ

with s−2 ¼ 0, s−1 ¼ 1, q−1 ¼ 0, and q0 ¼ 1.
The recurrence relations in Eq. (A4) imply that the

previously introduced quantities fulfil the identity

sk−1qk − qk−1sk ¼ ð−1Þk; ðA5Þ

x0 ¼ skxkþ1 þ sk−1
qkxkþ1 þ qk−1

: ðA6Þ

The convergence of the ratio “sk=qk” is equal to

x0 −
sk
qk

¼
�
1
qk

�
2 ð−1Þk�

xkþ1 þ qk−1
qk

� : ðA7Þ

For the special case of the recurrence relation defined
by Eq. (A1), it is possible to calculate the residual
error for the case of k ≥ 0, which is interesting for
MWI, as

fract
��

x0 −
sk
qk

�
qk

�
¼ x0

pkþ1
ð−1Þkþ1; ðA8Þ

fract
��

1
x0

−
qk
sk

�
sk

�
¼ ð−1Þ k

pkþ1
; ðA9Þ

where
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pk ¼
Yj¼k

j¼0

xj: ðA10Þ

Appendix B: Application of Continued Fractions to the
Evaluation of the fract�·� Function with Discrete Input
Values

The absolute value of the total residual error of a
two-wavelength interferometer is given as

Rðm0Þ ¼ jfractðm0=sf Þj; ðB1Þ
where m0 is an integer and sf is a real number.

In experimental practice, it is important to esti-
mate that range of possible values of m0 for which
the absolute value of the residual error falls below
a certain threshold given by the measurement uncer-
tainty of the interferometer. Usually, the residual er-
ror Rðm0Þ is expected to be small when the product
ðm0=sf Þ is close to an integer.

The critical values of m0 at which the minimum
residual error over the interval m0 ¼ ½1;m0max� can
be calculated if the parameter 1=sf is developed with
continued fractions. Hence, with the use of Eq. (A1)
and by setting

x0 ¼ 1
sf

; ðB2Þ

low values of the residual error are found to be
at m0 ¼ jqkj.

It is also possible to describe any value ofm0 in the
interval m0 ¼ ½jqkj; jqkþ1j� as a linear combination of
the quantities jqkj and jqkþ1j as

m0 ¼ c1jqkj þ c2jqkþ1j; ðB3Þ
where c1 and c2 are integer constants.

The corresponding value of the residual error,
using Eqs. (A8) and (B3), is given as
Rðm0¼ c1jqkjþc2jqkþ1jÞ¼ jfractðc1jqkjx0þc2jqkþ1jx0Þj;
so that

Rðm0 ¼ c1jqkj þ c2jqkþ1jÞ

¼
����fractðc1sign½qk� x0

pkþ1
ð−1Þkþ1

þ c2sign½qkþ1�
x0
pkþ2

ð−1ÞkÞ
����; ðB4Þ

where signðxÞ is the sign function defined as

signðxÞ ¼
8<
:

þ1 for x > 0
0 for x ¼ 0
−1 for x < 0

: ðB5Þ

The three most critical values of Rðm0Þ in the inter-
val m0 ¼ ½jqkj; jqkþ1j� are given as

Rðm0 ¼ c1jqkjþ c2jqkþ1jÞ ¼ x0=pkþ1 ðform0 ¼ jqkj Þ;
Rðm0 ¼ c1jqkjþ c2jqkþ1jÞ

¼ x0

����sign ðqkþ1Þ
pkþ2

−
sign ðqkÞ
pkþ1

���� ðform0 ¼ jqkþ1j− jqkj Þ;

Rðm0 ¼ c1jqkjþ c2jqkþ1jÞ
¼ x0=pkþ2 ðform0 ¼ jqkj Þ; ðB6Þ

which can be described with the following lower
boundary:

Rðm0 ¼ c1jqkj þ c2jqkþ1jÞ ≥ x0=pkþ1 ðfor m0 ¼ jqkj Þ;
Rðm0 ¼ c1jqkj þ c2jqkþ1jÞ

≥

���� x0
pkþ2

−
x0
pkþ1

���� ðfor m0 ¼ jqkþ1j− jqkjÞ;

Rðm0 ¼ c1jqkj þ c2jqkþ1jÞ ≥ x0=pkþ2 ðfor m0 ¼ jqkþ1j Þ:
ðB7Þ
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